Reduced-reference image quality assessment using a wavelet-domain natural image statistic model
نویسندگان
چکیده
Reduced-reference (RR) image quality measures aim to predict the visual quality of distorted images with only partial information about the reference images. In this paper, we propose an RR image quality assessment method based on a natural image statistic model in the wavelet transform domain. We use the Kullback-Leibler distance between the marginal probability distributions of wavelet coefficients of the reference and distorted images as a measure of image distortion. A generalized Gaussian model is employed to summarize the marginal distribution of wavelet coefficients of the reference image, so that only a relatively small number of RR features are needed for the evaluation of image quality. The proposed method is easy to implement and computationally efficient. In addition, we find that many well-known types of image distortions lead to significant changes in wavelet coefficient histograms, and thus are readily detectable by our measure. A Matlab implementation of the method has been made available online at http://www.cns.nyu.edu/~lcv/rriqa/.
منابع مشابه
Automatic no-reference image quality assessment
No-reference image quality assessment aims to predict the visual quality of distorted images without examining the original image as a reference. Most no-reference image quality metrics which have been already proposed are designed for one or a set of predefined specific distortion types and are unlikely to generalize for evaluating images degraded with other types of distortion. There is a str...
متن کاملNo Reference Image Quality Assessment Based On Machine Learning Approach Using Discrete Cosine Transform And Wavelet Features
Conventionally, image quality assessment (IQA) algorithms represent image quality as linearity with a “reference” or “perfect” image. Obvious drawback of this method is that the many times original image may not be accessible for the QA algorithm. This paper proposes an image quality assessment of natural-scene statistic-based on DCT score prediction approach. It operates in transform domain. M...
متن کاملAssessment of the Wavelet Transform for Noise Reduction in Simulated PET Images
Introduction: An efficient method of tomographic imaging in nuclear medicine is positron emission tomography (PET). Compared to SPECT, PET has the advantages of higher levels of sensitivity, spatial resolution and more accurate quantification. However, high noise levels in the image limit its diagnostic utility. Noise removal in nuclear medicine is traditionally based on Fourier decomposition o...
متن کاملReduced-Reference Image Quality Assessment based on saliency region extraction
In this paper, a novel saliency theory based RR-IQA metric is introduced. As the human visual system is sensitive to the salient region, evaluating the image quality based on the salient region could increase the accuracy of the algorithm. In order to extract the salient regions, we use blob decomposition (BD) tool as a texture component descriptor. A new method for blob decomposition is propos...
متن کاملAn Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005